Książka jest poświęcona metodom konstruowania uczących się programów komputerowych, zdolnych do poprawy swego działania na podstawie doświadczeń z przeszłości. Programy tego typu w zautomatyzowany sposób zdobywają wiedzę, którą wykorzystują do realizacji postawionych przed nimi zadań.
Autor przybliża czytelnikowi proces uczenia się systemów z algorytmicznego punktu widzenia. Wyjaśnia, na czym polega indukcyjne uczenie się. Przedstawia dwa główne podejścia do tego zagadnienia: indukcję drzew decyzyjnych i indukcję reguł decyzyjnych. Omawia probabilistyczne metody uczenia się, a także metody grupowania pojęciowego. Zajmuje się problemami przekształcania zbioru atrybutów. Przedstawia wybrane algorytmy uczenia się aproksymacji funkcji. Opisuje odkrywanie zależności w danych i uczenia się automatów i problem uczenia się systemów ze wzmocnieniem.
Wartość merytoryczną książki podnoszą liczne ćwiczenia, podzielone na tradycyjne, laboratoryjne i projektowe.
Informacja dotycząca wprowadzenia produktu do obrotu:
Ten produkt został wprowadzony na rynek przed 13 grudnia 2024 r. zgodnie z obowiązującymi wówczas przepisami (Dyrektywą o ogólnym bezpieczeństwie produktów). W związku z tym może on być nadal sprzedawany bez konieczności dostosowania do nowych wymogów wynikających z Rozporządzenia o Ogólnym Bezpieczeństwie Produktów (GPSR). Produkt zachowuje pełną legalność w obrocie, a jego jakość i bezpieczeństwo pozostają zgodne z obowiązującymi wcześniej standardami.
Information regarding product placement on the market:
This product was placed on the market before December 13, 2024, in accordance with the applicable regulations at the time (the General Product Safety Directive). As a result, it can continue to be sold without needing to meet the new requirements introduced by the General Product Safety Regulation (GPSR). The product remains fully compliant with all previously valid legal standards, ensuring its continued quality and safety.